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A Combinatorial Analysis of 
Subcube Reliability in Hypercubes 

Yeimkuan Chang and Laxmi N. Bhuyan 

Abstract-In this brief contribution, we derive an exact expression for 
(n - 1)-cube reliability in an n-cube using a new probability fault model 
and M existing random fault model. Approximate results are also ob- 
tained for m-cube reliability for values of m smaller than n - I .  We show 
that the proposed probability model for computing subcube reliability is 
equally accurate, but computationally more efficient than the existing 
random fault model. 

Zndex Terms-Hypercube, subcube reliability, fault-tolerance, combi- 
natorial model. 

I. INTRODUCTION 

Hypercube stmctures have received much attention due attractive 
properties of their topology such as logarithmic diameter, regularity, 
fault tolerance, and embeddability. Many commercial hypercube 
multiprocessors are available [I], [ 2 ] ,  [3]. As the size of a system 
grows, the probability of a fault occurring in the system increases. It 
is important to quantify the effect of the faults, so that fault-tolerant 
designs can be pursued. 

Reliability and availability are two measures normally used to 
evaluate the fault tolerance of a multiprocessor. The reliability of a 
system as a function of time, R(t), is defined as the probability that 
the system has survived the interval [O, t], given that it was opera- 
tional at time t = 0. The availability of a system as a function of time, 
A@), is the probability that the system is operational at the instant of 
time t. If the limit of this function exists as t goes to infinity, avail- 
ability expresses the expected fraction of time that the system is op- 
erational. Notice that the availability of a system is improved not only 
by the reliability of the components of the system but also by the 
maintenance and repair capability of the system. Reliability is used to 
describe systems in which repair cannot take place, such as satellite 
and aircraft computers. 

A traditional measure of reliability evaluation is the terminal reli- 
ability of a computer network [4], [ 5 ] .  Others are task-based reli- 
ability [6], [7] defined as the probability that some minimum number 
of connected nodes are available in the system for task execution, and 
subcube reliability [SI, defined as the probability that a subcube of a 
specified size is available in the system. Among these, the subcube 
reliability measure is the most practical because a user in the current 
hypercube multiprocessors is given a specific subcube for the execu- 
tion of hidher program. 

In this brief contribution, we define two combinatorial reliability 
models, the probability fault model and the random fault model, to 
evaluate subcube reliability of hypercubes. In the probability fault 
model, the subcube reliability is directly computed by using the node 
reliability. In the random fault model, as shown in [7], [8], an indi- 
rect approach is used. The probability that there exist f faults in an 
n-cube is first calculated. Then the probability that there exists fault- 
free subcube in an n-cube with f faults is computed. By combining 
these two probabilities, subcube reliability is obtained. Approximate 
results for m-cube reliability are obtained in [7] using the random 
fault model. The same model is used in [8] to obtain (n - I)-cube 
reliability 
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and show the equivalence between two models. The (n - 1)-cube 
reliability is obtained by forming all the available (n - 1)-cubes first, 
and then applying the principle of inclusion and exclusion [9] to get 
the exact expression. We also employ a divide-and-conquer approach 
to analyze the subcube reliability of smaller sizes by using the proh- 
ability fault model. Finally, we show that the probability fault model 
is computationally more efficient than the random fault model for 
calculating subcube reliability of smaller sizes. 

We assume that processors in the system have a homogeneous re- 
liability function. The failures of processors are assumed to he statis- 
tically independent and link failures are negligible compared to proc- 
essor failures. The reliability function of each node can have any 
failure distribution. The node reliability function can include the 
maintenance and repair capabilities of the node. 

The rest of this brief contribution is organized as follows. 
Section I1 presents some definitions and notations. In Section 111, the 
exact symbolic expression for (n - 1)-cube reliability is obtained by 
both the models. In Section IV, a divide-and-conquer technique is 
used to derive the subcube reliability of size n - 2 or less. Numerical 
results are given in Section V, and the concluding remarks are pro- 
vided in the last section. 

11. NOTATIONS AND DEFIN~TIONS 
An n-dimensional hypercube, denoted by Q,, consists of N = 2" 

nodes. Each of the N nodes is addressed by a distinct binary string of 
length n. Two nodes are connected by a link if and only if their ad- 
dresses differ in exactly one bit. Each subcube can be uniquely repre- 
sented as a temary string over the set (0, 1, *).  called its address, 
where * is a Don't Cure symbol. Specifically, a d-dimensional sub- 
cube, called d-cube, has exactly d * s in its address, as it involves a 
group of 2d nodes. For example, O@*, or equivalently 02*', repre- 
sents the 2-cube formed by nodes oo00, 0010, OOO1, and 0011 in a 
4-cube. The intersection of two subcuhes is the set of processors that 
is common to both the subcubes. 

A. Notation 

Q.-,(aj): Q,l(aj) is defined as *...* ai* ...* which is an (n - 1)- 

cube in an n-cube such that the ith hits of its temary address is 
aj(O or 1) and all other bits are * s. For example, the 2-cube **1 
in a 3-cube can be represented as Q z ( ~ )  where a. = 1 

N: N = 2", the number of nodes in an n-cube. 

&(ai): the reliability of the (n - 1)-cube Q,,(ai). 

Q,,-,,(aj, ... aid): Q,d(ai, ... ) is defined as an (n - d)-cube in an 

n-cube such that the ij th bit of its temary address is ajj (0 or 1) 

for j  = l..d and all other bits are * s. For example, the 1-cube @I 
in a 3-cube can be represented as Qz(a2q,) where az = 0 and 
a o = l .  

- 
complementary pair: Q- (ai,.  . . ajj . , ,aid ) and Q.4 (ai,.  . .aj, ... aid ) are 

called a complementary (n - d)-cube pair in an n-cube. 
p: p is the node reliability which is defined as the probability that the 

node is operational at time I. 
R,,(p): the m-cube reliability which is defined as.the probability that 

there exists a fault-free m-cube in an n-cube, given that p is the 
reliability of each node in the n-cube. 

P,( f ): the probability that there are f faulty nodes in an n-cube. 
P , , m ( f ) :  the probability that there exists a fault-free m-cube in an 

n-cube, given there areffaulty nodes in the n-cube. 
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- n . ( n  - 1) ... ( n  - m +  1) c;: c, - which is the number of combina- 
m! 

tions of m components selected from a set of n components. 

Si: C; x 2"-", i.e., the number of m-cubes in an n-cube. 

[xi: the smallest integer that is greater than or equal to x 

L d :  the largest integer that is smaller than or equal to x.  

III. ANALYSIS OFR,, ,@) AND ~ ~ , ~ - ~ f l  
In Section I11 we calculate the exact expressions for Rn,l(p) 

and Pn,,&) which will he used later to derive R, , (p )  and P&) for 
1 5 m 5 n - 2. We prove that the (n - I)-cube reliability are equiva- 
lent with both the models. 

In the probability fault model, the reliability of each node at time t 
is a random variable. The probability that a subcube is operational is 
represented by the reliability of the processors in the subcube. The 
m-cube reliability of a hypercube can be formulated as the union of 
the probabilistic events that all the possible m-cubes are operational. 
Since the terms in the m-cube reliability formula obtained above may 
not be mutually disjoint, a technique to convert the reliability formula 
into one with only mutually disjoint terms is needed. The basic 
method to compute the network reliability used in the probability 
fault model is called the principle of inclusion and exclusion [9]. The 
principle of inclusion and exclusion is not efficient for calculating the 
reliability of general networks. However, we show that it is very 
useful for hypercube reliability analysis. 

In the random fault model, we fixf, the number of faulty nodes in 
an n-cube, as 0 SfS N. The rationale behind fixingffaulty nodes in 
the n-cube is that we can easily obtain the probability P,(f ) 

= C,"pN-'(l- p)' that there are f faults in an n-cube. Thus, the 

remaining task is to compute the probability Pnm(f). 
The primary task of computing Pn,, ( f )  is to count the number of 

distributions off faults out of C," distributions such that there exists 

a fault-free m-cube. Then the system reliability can be expressed as 
N 

R,, ,(p)= ~ . ( f ) X . , , ( f ) .  (1) 
f =o 

A. The Probability Fault Model 
In this model, all the 2n (n - I)-cubes are formed first. Then the 

(n - 1)-cube reliability is expressed as the union of the reliability of 
these 2n (n - 1)-cubes. Since the probabilistic terms in the expression 
of the (n - I)-cube reliability are not mutually disjoint, the key to 
calculate the (n - I)-cube reliability is to convert the original reli- 
ability expression into one containing only disjoint terms. Let Ci be 
the probability that an (n - 1)-cube is operational, the (n - I)-cube 
reliability can be represented by the principle of inclusion and exclu- 
sion [9] as follows. 

2"-1 i + j  

~ " , " - ] ( p )  = C; +(-I) CiCj(aIl pairs) 
i=O i.j=U ... 2"-I 

- 
i . j .k=U ... 2"-l 

2"-1 
+(-1)2" c; 

i=O 

Each Ci can be represented by the reliability of the 2-j processors in 
its corresponding (n - 1)-cube. In the following, we derive a general- 

ized result for Rn,+l(p) of an n-cube. We consider a simple case first. 
The 0-cube reliability can be easily obtained as R,,,(p) = 1 - (1 - p ) N  
because the only instance where there is no fault-free 0-cube in an 
n-cube is when all the nodes are faulty. Before deriving the main 
result, we need the following lemmas. 

LEMMA I .  There are Si-, different combinations of d (n - I)-cubes 

in an n-cube such that the intersection of these d (n - I)-cubes is 
an (n- d)-cube, for  2 5 d 5 n. 

PROOF. There are C,'" combinations of d ( n  - 1)-cubes out of 2n 
(n - I)-cubes. However, if the set of d (n  - I)-cubes contain a 
complementary (n - ])-cube pair, the common intersection of 
these d (n - 1)-cubes is empty because Q.-,(ai) and e,,( ai ) are 
mutually disjoint. Any set of d (n - 1)-cubes that contains no 
complementary (n - I)-cuhe pair intersects in a common (n - d)- 
cube. For example, the intersection of d (n - I)-cubes, Qn-] (ai, 1, 

Q.-I (ai2) ,  ..., and Qn-1 (a id)  for ai, = 0 or 1, ij # it, j # k, and 

1 S j, k S d, is the ( n  - d)-cube, Qd (ai, , ai2 , . . . , a. ) The number 

of such sets of d (n - 1)-cubes is C: x 2* = S:-d where d (n - 1)- 

cubes are selected from n complementary pairs and there are two 
choices in each selected complementary ( n  - 1)-cube pair. I1 

LEMMA 2. The total number of nodes in the d (n - ])-cubes which 
intersect in an (n - d)-cube is equal to Zn -2" - d. 

PROOF. We shall see that any k of these d (n - 1)-cubes intersect in an 
(n - k)-cube. Thus, by the principle of inclusion and exclusion, the 
number of nodes in these d (n - 1)-cubes can be obtained as 

2 n - d x !  , = I  (-I)i-1c2d-i = 2" -2"-,, Le., the sum of the number 

of nodes in these d (n - I)-cubes, subtracted by the number of 
nodes in the intersections of any two (n - 1)-cubes, added by the 
number of nodes in the intersections of any three (n - I)-cubes, 
and so on. I 1  

For example, the intersection of two 2-cubes o** and **0 is 
o*O . It is easy to see that there are Sf different pairs of two 2-cubes 

intersecting in a I-cube. The intersection of o** , *a, and o*O is 
OOO. 

THEOREM 2. Given a homogeneous node reliabiliry p in an n-cube, 

- 

Id . 

the ( n  - 1)-cube reliabiliry is 

R",*-](p) = ~(- l ) i - l s : - ipN-*"- '  + (-1)"pN (3) 
i= l  

PROOF. According to the principle of inclusion and exclusion, the 
probability of having a fault-free (n - 1)-cube is obtained as 

where ai= Ofor 0 S i  S n -  1 and ai = 1 forn S i  S 2n - 1. A set of 
(n - I)-cubes covers all the N nodes if the set contains a comple- 
mentary (n - I)-cube pair. Otherwise, as shown in Lemma 2, a set 
of ( n  - 1)-cubes containing no complementary (n - I)-cube pair 
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covers fewer than N nodes. Thus, the terms in (4) can be divided 
into two cases: one is for the terms covering fewer than N nodes 
and the other is for the terms covering all the N nodes. 

Case I. We first consider the terms in (4) that do not cover all 
the N nodes in an n-cube, e.g., (-1) Q,~(ai)  x Q,+,(aj). for i # j 

mod n o r j  # i mod n. According to Lemmas 1 and 2, the terms 

((-l) ' - lS~-ipN-*n~) in the summation form of (3) can be oh- 

tained. For example, any two (n  - ])-cubes, excluding the com- 
plementary (n - 1)-cube pairs, intersect in an (n - 2)-cube. The 
number of nodes covered by these two (n - 1)-cubes is 2" - 2"-' 
according to Lemma 2. Since there are Cl x 2' pairs which are 
not complementary (n - 1)-cube pairs, we get the term 

(-l)S;-' pN-'"'. Other terms can be derived similarly. 

Case II.  Consider the terms consisting of k (n - 1)-cubes, 2 5 k 
< 2n. ?he terms consisting of a complementary (n - 1)-cube pair 
must belong to this case. Again by using the principle of inclusion 
and exclusion, we have E& choices such that these terms cover all 
the nodes in the n-cube, as follows. 

The first item Ci'C;!;' in the square brackets includes all the 

terms containing at least one complementary (n - 1)-cube pair. 
However, the terms containing at least two complementary pairs 
are included twice in E&. Therefore, C;C:!;' is subtracted from 

Bk. Similarly, we add the terms containing at least three comple- 
mentary pairs, and so on, until [+]complementary pairs are in- 

cluded. Summing up all Bb we have the reliability for the second 
case as 

2" 

B = p N  x (-1)'-'Ek = (-l)"pN (6) 
k =2 

Adding the reliability of the above two cases, we obtain the proof 
for the theorem. 0 

B. The Random Fault Model 
An approximate evaluation of P.,,(/), using the random fault 

model, exists in the literature [7]. In this section, we only consider 
PnF1(/)  and show that an exact expression can be achieved for this 
particular case. Then we show that we obtain the same results as 
those using the probability fault model. 

We start with a simple example involving a 3-cube with two 
faults. To have a fault-free 2-cube, these two faults must reside in a 
2-cube such that the other 2-cube is fault-free. In total, there are 
S: = 6 2-cubes in a 3-cube. There are different distributions of 

two faults in a 2-cube. Therefore, there. are 6 x C; = 36 possible 

configurations where the two faults are located in a 2-cube. However, 
many cases are counted twice. For example, if the faults are located at 
nodes 0 and 1, they are counted twice for both o** and *o*. Thus, 
the actual number of distributions of these two faulty nodes in a 
2-cube is S: x - S: x Ci = 24. The result of above example can 

be verified by an independent argument as follows. Given two faults 
in an n-cube, the only distribution of the two faults which causes no 
(n - 1)-cube to be available is the one where two faults are located at 
antipodal positions. Thus, the above result can be easily verified as 
C; - 4  = 24. Before we provide the general result for the n-cube 

containing any number of faults, we need the following lemma. 
LEMMA 3. The number of distributions off faults which are confined 

in an (n - d)-cube is (f ), for 1 < d 5 n, where 

PROOF. This proof follows from the principle of inclusion and exclu- 

sion. There are Si-,& different ways in which f faults can 

be distributed in an (n - 4-cube. However, there is a possibility 
that the faults distributed in an (n - d - 1)-cube are counted twice. 

Therefore, S& Cy4-' needs to be deducted from the sum to 

rectify the situation. Again, the possibility that faults are contained 
in an (n - d - 2) -cube needs to be added back, and so on. 0 

THEOREM 3. The (n - ])-cube reliability in an n-cube containing 
f > 1 faulty nodes is 

PRDDF. It directly follows from Lemma 3. 0 

The above results can be easily verified when f = 1 or 2, as fol- 
lows. The number of distributions of one fault in an n-cube is 

N,,"-,(l) = c:=, (-l)i-lSi-lC;"-' = N. The number of distributions 

of two faults in an n-cube is Ci" -2"-' = Nn,n-l(2) because the 

distributions with two faults in antipodal positions are the only ones 
that destroy all the (n - 1)-cubes. 
THEOREM 4. The (n - ])-cube reliability in a faulty n-cube derived by 

the probability fault model and the random fault model are 
equivalent. 

PROOF. Given f faults in an n-cube, Theorem 3 gives the probability 

of having a fault-free (n - I)-cube as ?!e& . With a node reli- 

ability p, the probability of having f faults in the n-cube is 
Cf"pN-' (1 - p)'. Thus, the random fault model gives the (n - 1)- 

cube reliability as 

cf 

PN + N n  (-l)i-lS;-i c y  x pN-f x (1 - p)' 

f = 1  i=l 

i=l 

= R " d P )  

in (3). The summation indexfin the first line starts from 1 because 
the probability of all the nodes being good (Le,, pN) is separated 
out in the first line. 0 

IV. APPROXIMATE ANALYSIS OF R, , (p )  
In Section IV, we derive an approximate subcube reliability ex- 

pression for 1 < m < n - 2. Since an analysis of P..,(f) using the ran- 
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dom fault model exists in the literature [7], [lo], we only present the 
derivation of R,,@) using the proposed probability fault model. It is 
shown in Section V that the new model is as accurate as the random 
fault model, but is more efficient computationally. 

We use a divide-and-conquer technique to compute R.,,@). The 
n-cube is divided into two (n  - 1)-cubes, Q,, and along di- 
mension i. We consider two cases in which a fault-free (n - I)-cube 
can be. formed as follows. 

1) There exists a fault-free m-cube in either Q,, or &. 
2) Neither Qn-l nor QL-, contain a fault-free m-cube. But 

a fault-free m-cube can be formed by combining a fault-free 
(m - 1)-cube in e,+, with its complementary (m - I)-cube in 

Subsequently, we derive the probabilities of having a fault-free 
m-cube in an n-cube, RiJp) and Ri,,(p) for Cases I and 11, 

respectively. 
Case I. Since we know the probability of having a fault-free (n - 

I)-cube in an n-cube, the probability of having a fault-free m-cube in 
either Qn-, or may be written as Ra-,+,@). Thus, the probability 
K;,, of having an m-cube in an n-cube can be expressed as 

Q L  ' 

&," = 2 x  R"-,,,(P)-[~"-,.,(P)lz. (9) 

The last negative term within square brackets denotes the case when 
both Q,, or have a fault-free m-cube. This term is subtracted 
because it is the probability that is counted twice. 

Case II. The only way that an (m - 1)-cube in Qn-, and an (m - 1)- 
cube in a'-, can be combined to form an m-cube is that these two (m 

- 1)-cubes must be neighbors. In other words, the ternary representa- 
tions of these two (m - I)-cubes are different only in the ith bit, 
making them a complementary (m - I)-cube pair. Thus, we can inter- 
pret the n-cube as an (n - 1)-cube in which each node is a one-cube. 
Thus, the problem of determining the probability of having a fault- 
free m-cube for Case I1 reduces to determining the probability of 
having a fault-free (m - I)-cube in an (n - I)-cube with a node reli- 
ability pz. Therefore, we have the following probability Ri,,(p) for 

Case 11: 

R,$,(P) = R . - I . , . I ( P ~ ) - R % - I , ~ ( P ~ ) .  (10) 

In (IO) the deduction of R._I,,@2) from Rn-l,a.l@2) avoids counting 
twice the probability of having m-cubes in each of the (n - I)-cubes. 

The probability expressions of Ri,,(p) and $,(p) are not dis- 

joint. We cannot simply sum up Ri,,(p) and Ri,,(p) and then 

deduct Ri,,(p) x Ri,,(p) because the value of RA,,(p) 

x R,&,(p) is smaller than what is supposed to be subtracted. The 

reason is as follows. The value of Rj.,(p) x R&,(p) is obtained as 

if the random variables in Ri,,(p) were different from those in 

R:Jp) . For example, consider the probability of having a fault-free 

I-cube in a 3-cube. The reliability expression of Ri,,(p) includes 

tribution of R;.,(p) and R$(p) is lost. However, it is difficult to 

obtain the exact expression for the m-cube reliability. Therefore, for 
simplicity, we approximate the probability of having an m-cube as 
follows. 

Equation (11) is a recursive expression since ~ i , , ( p )  is recur- 

sive. The recursion continues until certain boundary conditions, 
&-,(P) and R2 ,0 (~ ) ,  are reached. 

v. NUMERICAL RESULTS 
In Section V, we plot and compare numerical results for subcube 

reliability of different sizes. The results in [8] were obtained for the 
(n - 1)-cube and were later compared with the results in [7]. Hence, 
we will compare our results only with those obtained in [7] using the 
random fault model. 

Fig. 1 illustrates the subcube reliability for a 6-cube. The node re- 
liability is assumed to be homogeneous with an exponential failure 
distribution rate 1 = 0.001. The 5-cube reliability in a 6-cube is calcu- 
lated by (3) which is exact and denoted as Em165 in the figure. The 
number 65 refers to the reliability of 5-cube in a 6-cube system. The 
results, Random65 and Prob65, obtained with the random and the 
probability fault models are the same as Exact65 and, therefore, are 
not shown in Fig. I .  Eruct64 (4-cube reliability in a 6-cube) is the 
exact result computed by using the Boolean algebra technique which 
converts the reliability expression into one with only disjoint terms. 
Prob64 and Random64 (Prob63 and Random63) represent the 
4-cube (3-cube) results of the probability fault model and the random 
fault model, respectively. Exact63 is not shown because it can not be 
computed in a reasonable amount of time by using the Boolean alge- 
bra technique. As expected, the reliability of a smaller subcube is 
higher than that of a larger subcube. It is seen that the difference 
among Exact64, Prob64, and Random64 is not significant. Fig. 2 
illustrates similar reliability results for an 8-cube based on 

The time complexity of calculating R,,,@) for the probability fault 
model can be analyzed as follows. According to (11). Ram@) is ob- 
tained by adding up all the R&)s for i = n - 1 to 0 and j = m to 0. 
Assuming that the time to calculate each item in R.,,@) is O(1), the 
time complexity of R,,&) is O(n). Thus, the-time complexity of 
R,,@) can be obtained as O(n2). The time complexity of calculating the 
m-cube reliability using the random fault model is O(n2Z"), the detailed 
derivation being given in [lo]. The random fault model has much 
higher complexity than the probability fault model because it involves 
the computations of the reliability for number of faults f" 1 to 2". 

The low time complexity of the new probability fault model is 
evident from the following experiment. Table I shows the execution 
time (in seconds) of computing the subcube reliability using the 
probability and random fault models, as denoted by F'robFM and 
RandFM, respectively. The computation time for the random fault 
model is obtained by using the recursive reliability formulae given in 
[7]. The measurement of time is based on a C program running on a 

a=o.oooi. 

x& is ~ 1 x 4  which should be subtracted. As can be seen, the reli- 
ability expression of x R : , , ( ~ )  includes w,xux4 instead of 

.q,xIx4. In other words, some information about the probability con- 

hypercube of size 12 in Fig. 3 with 1 = O.OOO1. It only shows the 
results from the probability fault model since the random fault model 
is too time consuming to compute the reliability. 



956 IEEE TRANSACTlONS ON COMPUTERS, VOL. 44. NO. 7, JULY 1995 

Fig 

Miasion Tim (Unit = Hour) 

. 1 .  Subcube reliability variation of a 6-cube. 

Fig. 2. Subcube reliability variation of an 8-cube. 

mion Tim (Unit = Hour) 

Fig. 3. Subcube reliability variation of a 12-cube. 

TABLE I 
COMPL~TATION TIME (SEC) OF SUBCUBE RELIABILITY ON A SPARC STATION 

EEB 9-cube 0 11,700 

6-cube 
7-cube 
8-cube 0 75 1 

VI. CONCLUSION 
We have presented two fault models, the probability fault model 

and the random fault model, to predict the subcube reliability of hy- 
percubes. An exact expression for (n - I)-cube reliability is derived 
for both the models. The divide-and-conquer technique is used to 
obtain the reliability of subcubes of smaller sizes. A technique to 
obtain approximate results for the subcube reliability of size smaller 
than n - 1 is presented using the probability fault model. We showed 

that the new probability fault model is much more computationally 
efficient than the random fault model for calculating subcube reli- 
ability of smaller sizes. 
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